TKM COLLEGE OF ENGINEERING

(Government Aided and Autonomous)

celebrating 60 years of excellence

M.Tech Curriculum 2022

THANGAL KUNJU MUSALIAR COLLEGE OF ENGINEERING (Government Aided and Autonomous) KOLLAM-691005, KERALA

Abstract

TKMCE-Academics- M.Tech Curriculum 2022 -orders issued

No: ACU3/1079/2022

Date: 01/10/2022

Order

Read:

- 1. UGC order Ref: F. 22-1/2022(AC) dated 26th May 2022
- 2. U.O. No. KTU/ASST11(ADMIN)/3212/2022 dated 2nd September 2022
- 3. ACU3/1010/2022 dated 16th September 2022

The TKM College of Engineering was conferred with autonomous status by the UGC on 26th May 2022 vide Ref: 1 and the same was notified by the APJ Abdul Kalam Technological University, on 2th September 2022, vide ref.2

The first meeting of the Governing Body after the notification of autonomous status was held on 15th September 2022, authorized the Principal to constitute the Academic council as per the UGC (Conferment of Autonomous Status upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2018. As per the resolution of the Governing Body, the Principal has constituted the Academic council on 16^a September 2022 vide ref.3. The first Academic council meeting held on 24th September 2022, approved the M.Tech Curriculum for the academic year 2022-23. The academic curriculum for the M.Tech programmes, 2022 approved by the Academic Council, is hereby notified as the TKM College of Engineering (Aided and Autonomous) M.Tech Curriculum 2022.

PRINCIPAL THAN RINCIPAL SALIAR COLLEGE OF ENGINEERING KOLLAM-5

Copy to: All HODs, Deans, IQAC, COE, AA, AO, SS, JS(A)

TKM College of Engineering (Aided and Autonomous) M.Tech Curriculum 2022.

This will be known as **the TKM College of Engineering M.Tech, Curriculum 2022.** These are subject to the provisions of the UGC (Conferment of Autonomous Status upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations, 2018 and APJ Abdul Kalam Technological University Act, 2015, the statutes and ordinances if any issued in the subject from time to time. All the rules specified herein, approves by the Academic council, will be in force and applicable to students admitted from the Academic year 2022-23 onwards.

M.TECH. CURRICULUM

TKM COLLEGE OF ENGINEERING (For 2022 admissions)

CONTENTS

Sl. No.	PROGRAMME WHOSE CURRICULUM AND ASSESSMENT PATTERN IS GIVEN	Page No.
1	STRUCTURAL ENGINEERING & CONSTRUCTION MANAGEMENT	04
2	TRANSPORTATION ENGINEERING	20
3	COMPUTER SCIENCE AND ENGINEERING	37
4	COMMUNICATION SYSTEMS	54
5	INDUSTRIAL INSTRUMENTATION AND CONTROL	70
6	POWER SYSTEM	86
7	INDUSTRIAL REFRIGERATION AND CRYOGENICS	102
8	COMPUTER INTEGRATED MANUFACTURING	118
9	ARTIFICIAL INTELLIGENCE	134
10	INDUSTRIAL SAFETY AND ENGINEERING	151

M.TECH. CURRICULA

The document lists the curricula of the M.Tech. programmes hosted by TKM College of Engineering. The list of programmes are as follows:

Sl.	Programme (Department offering the Programme)
No.	
1	STRUCTURAL ENGINEERING & CONSTRUCTION MANAGEMENT (Civil Engineering)
2	TRANSPORTATION ENGINEERING (Civil Engineering)
3	COMPUTER SCIENCE AND ENGINEERING (Computer Science and Engineering)
4	COMMUNICATION SYSTEMS (Electronics and Communication Engineering)
5	INDUSTRIAL INSTRUMENTATION AND CONTROL (SF*) (Electrical and Electronics Engineering)
6	POWER SYSTEM (SF*) (Electrical and Electronics Engineering)
7	INDUSTRIAL REFRIGERATION AND CRYOGENICS (Mechanical Engineering)
8	COMPUTER INTEGRATED MANUFACTURING (SF*) (Mechanical Engineering)
9	ARTIFICIAL INTELLIGENCE (Mechanical Engineering)
10	INDUSTRIAL SAFETY AND ENGINEERING (Chemical Engineering)
SF* S	elf Financing

M.TECH. 2022

Discipline: Civil Engineering Stream: Structural Engineering and Construction Management

SEMESTER I										
[
SLOT	CODE	COURSE NAME	CIA	ESE	L-T-P	HOURS	CREDIT			
А	221TCE100	PROBABILITY AND STATISTICS	40	60	3-0-0	3	3			
В	221TCE001	ADVANCED DESIGN OF STRUCTURES	40	60	3-0-0	3	3			
С	221TCE002	CONSTRUCTION PLANNING SCHEDULING AND CONTROL	40	60	3-0-0	3	3			
D	221ECEXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3			
Е	221ECEXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3			
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2			
Т	221LCE003	ADVANCED STRUCTURAL ENGINEERING LAB	100		0-0-2	2	1			
Total			340	360		19	18			

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

PROGRAM ELECTIVE 1								
SLOT SL NO COURSE CODE COURSE NAME L-T-P HOURS								
D	1	221ECE000	STRUCTURAL DYNAMICS	3-0-0	3	3		
	2	221ECE001	THEORY OF ELASTICITY	3-0-0	3	3		
	3	221ECE002	MODERN CONSTRUCTION MATERIALS	3-0-0	3	3		
	4	221ECE003	ADVANCED CONSTRUCTION TECHNIQUES	3-0-0	3	3		

PROGRAM ELECTIVE 2

PROGRAM ELECTIVE 2								
SLOT	SL NO	COURSE CODE	L-T-P	HOURS	CREDIT			
Е	1	1 221ECE006 FINITE ELEMENT METHOD		3-0-0	3	3		
	2	221ECE007	HIGH RISE STRUCTURES	3-0-0	3	3		
	3	221ECE008	CONSTRUCTION MANAGEMENT AND ENGINEERING ECONOMICS	3-0-0	3	3		
	4	221ECE009 CONSTRUCTION CONTRACTS METHODS AND EQUIPMENT		3-0-0	3	3		

SEMESTER II

	COURSE		MA	RKS			
SLOT	CODE	COURSE NAME CIA ES		ESE	L-T-P	HOURS	CREDIT
А	222TCE100	ADVANCED NUMERICAL METHODS	40	60	3-0-0	3	3
В	222TCE001	ADVANCED CONCRETE TECHNOLOGY	40	60	3-0-0	3	3
С	222ECEXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222ECEXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
Е	222EEXXXX / 222ECEXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PCE100	MINIPROJECT	100		0-0-4	4	2
Т	222LCE003	COMPUTATIONAL LAB	100		0-0-2	2	1
Total			400	300		21	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

PROGRAM ELECTIVE 3								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
С	1	222ECE100	ANALYSIS AND DESIGN OF EARTHQUAKE RESISTANT STRUCTURES	3-0-0	3	3		
	2	222ECE001	ADVANCED METAL STRUCTURES	3-0-0	3	3		
	3	222ECE002	PROJECT PLANNING AND IMPLEMENTATION	3-0-0	3	3		
	4	222ECE003	CONSTRUCTION PERSONNEL MANAGEMENT	3-0-0	3	3		

PROGRAM ELECTIVE 4

	PROGRAM ELECTIVE 4								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
D	1	222ECE006	ADVANCED DESIGN OF FOUNDATION	3-0-0	3	3			
	2	222ECE007	DESIGN OF BRIDGES	3-0-0	3	3			
	3	222ECE008	MAINTENANCE AND REHABILITATION OF STRUCTURES	3-0-0	3	3			
	4	222ECE009	PRESTRESSED CONCRETE DESIGN	3-0-0	3	3			

INTERDISCILINARY ELECTIVE

	INTERDISCILINARY ELECTIVE									
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT				
Е	1	222ECE096	NATURAL HAZARDS AND IMPACT MANAGEMENT	3-0-0	3	3				
	2	222ECE097	MECHANICS OF COMPOSITE MATERIALS	3-0-0	3	3				
	3	222ECE098	PROJECT EVALUATION AND MANAGEMENT	3-0-0	3	3				

INDUSTRY ELECTIVE

	SEMESTER III									
SLOT	COURSE CODE	COURSE NAME	MARKS CIA ESE		L-T-P	HOURS	CREDIT			
	TRACK 1									
A*	223MCEXXX	моос	To be completed successfully				2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223ICE100	INTERNSHIP	50	50			3			
D	223PCE100	DISSERTATION PHASE 1	100		0-0-17	17	11			
		TRACK	K 2							
A*	223MCEXXX	моос	To com succe	o be pleted ssfully			2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223ICE100	INTERNSHIP	50	50			3			
D	223PCE001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11			
	Т	otal	190	110		20	16			

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourthsemester (starting from semester 1).

AUDIT COURSE

AUDIT COURSE								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	223AGE100	ACADEMIC WRITING	3-0-0	3	-		
	2	ADVANCED ENGINEERING MATERIALS 3-0		3-0-0	3	-		
	3	223AGE002	GE002 FORENSIC ENGINEERING 3-0		3	-		
	4	223AGE003DATA SCIENCE FOR ENGINEERS3-0		3-0-0	3	-		
	5	223AGE004	DESIGN THINKING	3-0-0	3	-		
	6	223AGE005	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-		
В	7	223AGE006	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-		
	8	223AGE007	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-		
	9	223AGE008	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-		
	10	223AGE009	PRINCIPLES OF AUTOMATION	3-0-0	3	-		
	11	223AGE010	REUSE AND RECYCLE TECHNOLOGY	3-0-0	3	-		
	12	223AGE011	SYSTEM MODELING	3-0-0	3	-		
	13 223AGE012 EXPERT SYSTEMS		3-0-0	3	-			

SEMESTER IV									
COURSE MARKS									
SLOT	CODE	COURSE NAME	CIA	ESE	L-T-P	HOURS	CREDIT		
TRACK 1									
А	224PCE100	DISSERTATION PHASE II	100	100	0-0-24	24	16		
TRACK 2									
А	224PCE001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16		
Total				100		24	16		

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project: 20 marks

Course based task/Seminar/Quiz: 10 marks

Test paper, 1 no: 10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be 150 minutes.

(ii) ELECTIVE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original publications (minimum 10	
publications shall be referred)	: 15 marks
Course based task/Seminar/Data	
collection and interpretation	: 15 marks
Test paper, 1 no.	: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation: 40 marks

Course based task	:	15 marks
Seminar/Quiz	:	15 marks
Test paper, 1 no.	:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and inter disciplinary approaches such as big data, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed Original publications (minimum 10 publications shall be referred) : 15 marks Course based task/Seminar/Data collection and interpretation : 15 marks Test paper, 1 no. : 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOCs

The MOOCs shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOCs will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC is to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) **MINIPROJECT**

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of

functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently

under-performing, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.

(iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline :Civil Engineering**Stream :**Transportation Engineering

SEMESTER I

CI OT	COURSE	COUDCE NAME	MA	RKS	ттр	HOUDE	CDEDIT
SLUI	CODE	COURSE NAME	CIA	ESE	L-1-P	HUUKS	CREDIT
А	221TCE100	PROBABILITY AND STATISTICS	40	60	3-0-0	3	3
В	221TCE009	URBAN TRANSPORTATION PLANNING	40	60	3-0-0	3	3
С	221TCE0010	ANALYSIS AND DESIGN OF PAVEMENT SYSTEMS	40	60	3-0-0	3	3
D	221ECEXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
Е	221ECEXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LCE004	PAVEMENT ENGINEERING LAB	100		0-0-2	2	1
Total			340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

	PROGRAM ELECTIVE 1							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	221ECE048	HIGHWAY DESIGN AND SAFETY	3-0-0	3	3		
D	2	221ECE049	OPERATIONS RESEARCH IN TRANSPORTATION ENGINEERING	3-0-0	3	3		
	3	221ECE050	SUSTAINABLE TRANSPORTATION	3-0-0	3	3		
	4	221ECE051	GEOSYNTHETICS AND GROUND IMPROVEMENT TECHNIQUES FOR PAVEMENT	3-0-0	3	3		

PROGRAM ELECTIVE 2

	PROGRAM ELECTIVE 2						
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	221ECE054	TRANSPORTATION ECONOMICS	3-0-0	3	3	
Е	2	221ECE055	PAVEMENT MATERIAL CHARACTERISATION AND CONSTRUCTION PRACTICES	3-0-0	3	3	
E	3	221ECE056	GEOINFORMATICS IN TRANSPORTATION ENGINEERING	3-0-0	3	3	
	4	221ECE057	PUBLIC TRANSPORT SYSTEM	3-0-0	3	3	

	SEMESTER II										
SLOT	COURSE	COURSE NAME	MARKS		MARKS		MARKS		I.T.P	HOURS	CREDIT
SLUT	CODE	COURSE NAME	CIA	A ESE	L-1-1	noons	CREDIT				
А	222TCE100	ADVANCED NUMERICAL METHODS	40	60	3-0-0	3	3				
В	222TCE004	TRAFFIC ENGINEERING	40	60	3-0-0	3	3				
С	222ECEXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3				
D	222ECEXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3				
E	222EEXXXX / 222ECEXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3				
S	222PCE100	MINIPROJECT	100		0-0-4	4	2				
Т	222LCE004	TRAFFIC ENGINEERING AND SOFTWARE LAB	100		0-0-2	2	1				
Total			400	300		21	18				

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

	PROGRAM ELECTIVE 3								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222ECE048	ANALYSIS AND DESIGN OF INTERSECTIONS	3-0-0	3	3			
C	2	222ECE049	INTELLIGENT TRANSPORTATION SYSTEMS	3-0-0	3	3			
C	3	222ECE050	REGIONAL TRANSPORTATION PLANNING	3-0-0	3	3			
	4	222ECE051	PAVEMENT MANAGEMENT SYSTEMS	3-0-0	3	3			

PROGRAM ELECTIVE 4

	PROGRAM ELECTIVE 4								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222ECE054	ANALYTICAL TECHNIQUES IN TRANSPORTATION	3-0-0	3	3			
n	2	222ECE055	ADVANCED TRAVEL DEMAND MODELLING	3-0-0	3	3			
D	3	222ECE056	TRANSPORTATION SYSTEM MANAGEMENT AND ANALYSIS	3-0-0	3	3			
	4	222ECE057	ROAD SAFETY AND ACCIDENT INVESTIGATION	3-0-0	3	3			

INTERDISCILINARY ELECTIVE

	INTERDISCILINARY ELECTIVE							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222ECE096	NATURAL HAZARDS AND IMPACT MANAGEMENT	3-0-0	3	1		
Е	2	222ECE097	MECHANICS OF COMPOSITE MATERIALS	3-0-0	3	2		
	3	222ECE098	PROJECT EVALUATION AND MANAGEMENT	3-0-0	3	3		

INDUSTRY ELECTIVE

	SEMESTER III						
		I					
SLOT	COURSE	COURSE NAME		RKS	L-T-P	HOURS	CREDIT
	CODE			ESE			
		TRACI	(1				
A*	223MCEXXX	моос	To comj succe	o be pleted ssfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223ICE100	INTERNSHIP	50	50			3
D	223PCE100	DISSERTATION PHASE 1	100		0-0-17	17	11
		TRACK	K 2				
A*	223MCEXXX	моос	To com succe	o be pleted ssfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223ICE100	INTERNSHIP	50	50			3
D	223PCE001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11
Total			190	110		20	16

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1).

AUDIT COURSE SL COURSE SLOT L-T-P HOURS **COURSE NAME** CREDIT NO CODE 1 223AGE100 ACADEMIC WRITING 3-0-0 3 -ADVANCED ENGINEERING 2 223AGE001 3-0-0 3 _ MATERIALS 223AGE002 FORENSIC ENGINEERING 3-0-0 3 3 -DATA SCIENCE FOR 4 223AGE003 3-0-0 3 -**ENGINEERS** DESIGN THINKING 3 5 223AGE004 3-0-0 -FUNCTIONAL PROGRAMMING 6 223AGE005 3-0-0 3 -IN HASKELL FRENCH LANGUAGE (A1 В 7 223AGE006 3-0-0 3 -LEVEL) GERMAN LANGUAGE (A1 8 223AGE007 3-0-0 3 _ LEVEL) JAPANESE LANGUAGE (N5 9 223AGE008 3-0-0 3 _ LEVEL) 10 223AGE009 PRINCIPLES OF AUTOMATION 3-0-0 3 -**REUSE AND RECYCLE** 223AGE010 3-0-0 3 11 _ TECHNOLOGY 223AGE011 SYSTEM MODELING 3 12 3-0-0 -13 223AGE012 EXPERT SYSTEMS 3-0-0 3 _

AUDIT COURSE

	SEMESTER IV								
SLOT	COURSE CODE	COURSE NAME	MA CIA	RKS ESE	L-T-P	HOURS	CREDIT		
	TRACK 1								
А	224PCE100	DISSERTATION PHASE II	100	100	0-0-24	24	16		
TRACK 2									
А	224PCE001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16		
	Т	otal	100	100		24	16		

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project: 20 marks

Course based task/Seminar/Quiz: 10 marks

Test paper, 1 no: 10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be 150 minutes.

(ii) **ELECTIVE COURSES**

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer revie	ewed
Original publications (minimum 10	
publications shall be referred)	: 15 marks
Course based task/Seminar/Data	
collection and interpretation	: 15 marks
Test paper, 1 no.	: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation: 40 marks

Course based task	:	15 marks
Seminar/Quiz	:	15 marks
Test paper, 1 no.	:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to dealwith any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed Original publications (minimum 10 publications shall be referred) : 15 marks Course based task/Seminar/Data collection and interpretation : 15 marks Test paper, 1 no. : 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) **MINIPROJECT**

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of
the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather

than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.

- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions

from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline : Computer Science and Engineering Stream : Computer Science and Engineering

SEMESTER I

SLOT	COURSE	COUDSENAME	MA	RKS	ІТР	HOUDS	CDEDIT
SLUI	CODE	COURSENAME	CIA	ESE	L-I-P	ΠΟΟΚΣ	CREDIT
А	221TCS100	LEARNING	40	60	3-0-0	3	3
В	221TCS001	ADVANCED DATABASE MANAGEMENT	40	60	3-0-0	3	3
С	221TCS002	FOUNDATIONS OF COMPUTER SCIENCE	40	60	3-0-0	3	3
D	221ECSXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
E	221ECSXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LCS100	COMPUTING LAB I	100		0-0-2	2	1
		Total	340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

	PROGRAM ELECTIVE 1					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	221ECS100	OBJECT ORIENTED SOFTWARE ENGINEERING	3-0-0	3	3
	2	221ECS001	ADVANCED DATA MINING	3-0-0	3	3
D	3	221ECS002	CLOUD COMPUTING	3-0-0	3	3
	4	221ECS003	WEB SERVICES	3-0-0	3	3
	5	221ECS004	COMPUTATIONAL INTELLIGENCE	3-0-0	3	3
	6	221ECS005	AUTOMATED VERIFICATION	3-0-0	3	3

PROGRAM ELECTIVE 2

	PROGRAM ELECTIVE 2					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	221ECS006	ADVANCED COMPUTER NETWORKS	3-0-0	3	3
	2	221ECS007	PATTERN RECOGNITION	3-0-0	3	3
Е	3	221ECS008	ADVANCED COMPUTER ARCHITECTURE	3-0-0	3	3
	4	221ECS009	NATURAL LANGUAGE PROCESSING AND TEXT MINING	3-0-0	3	3
	5	221ECS010	ADVANCED COMPILER DESIGN	3-0-0	3	3
	6	221ECS011	BIOINFORMATICS	3-0-0	3	3

	SEMESTER II						
SLOT	COURSE	COURSE NAME	MARKS		L-T-P	HOURS	CREDIT
	CODE			ESE			
А	222TCS0100	ADVANCED DATA STRUCTURES AND ALGORITHMS	40	60	3-0-0	3	3
В	222TCS001	ADVANCED OPERATING SYSTEMS	40	60	3-0-0	3	3
С	222ECSXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222ECSXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
E	222EEXXXX / 222ECSXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PCS100	MINI PROJECT	100		0-0-4	4	2
Т	222LCS100	COMPUTING LAB 2	100		0-0-2	2	1
	Т	otal	400	300		21	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

	PROGRAM ELECTIVE 3					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	222ECS100	BIG DATA ANALYTICS	3-0-0	3	3
	2	222ECS001	WIRELESS SENSOR NETWORKS	3-0-0	3	3
С	3	222ECS002	DEEP LEARNING	3-0-0	3	3
	4	222ECS003	COMPUTER VISION	3-0-0	3	3
	5	222ECS004	SEMANTIC WEB ARCHITECTURE	3-0-0	3	3
	6	222ECS005	PROGRAM ANALYSIS	3-0-0	3	3

PROGRAM ELECTIVE 4

	PROGRAM ELECTIVE 4					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	222ECS006	BLOCKCHAIN TECHNOLOGY AND IOT	3-0-0	3	3
	2	222ECS007 SOCIAL NETWORK ANALYSIS		3-0-0	3	3
D	3	222ECS008	MODERN DATABASE MANAGEMENT	3-0-0	3	3
	4	222ECS009	DISTRIBUTED ALGORITHMS	3-0-0	3	3
	5	222ECS010	010 CYBER FORENSICS AND INFORMATION SECURITY		3	3
	6	222ECS011	SOFTWARE TESTING	3-0-0	3	3

INTERDISCIPLINARY ELECTIVE

	INTERDISCIPLINARY ELECTIVE					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	222ECS056	INTRODUCTION TO MACHINE LEARNING	3-0-0	3	3
Е	2	222ECS057	DATA STRUCTURES	3-0-0	3	3
	3	222ECS058	SOFTWARE PROJECT MANAGEMENT	3-0-0	3	3

INDUSTRY ELECTIVE

SEMESTER III

SLOT	COURSE	COUDSE NAME	MA	RKS	I_T_D	HOUDS	CDEDIT
3101	CODE	COURSENAME	CIA	ESE	L-1-F	HOUKS	CREDIT
		TRACE	۲ ۲				
			• •				
A*	223MCSXXX	моос	To comj succe	o be pleted essfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223ICS100	INTERNSHIP	50	50			3
D	223PCS100	DISSERTATION PHASE 1	100		0-0-17	17	11
		TRACK	ζ2				
A*	223MCSXXX	моос	To comj succe	o be pleted essfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223ICS100	INTERNSHIP	50	50			3
D	223PCS001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11
	То	tal	190	110		20	16

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourthsemester (starting from semester 1).

AUDIT COURSE

	AUDIT COURSE					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	223AGE100	ACADEMIC WRITING	3-0-0	3	-
	2	223AGE001	ADVANCED ENGINEERING MATERIALS	3-0-0	3	-
	3	223AGE002	FORENSIC ENGINEERING	3-0-0	3	-
	4	223AGE003	DATA SCIENCE FOR ENGINEERS	3-0-0	3	-
	5	223AGE004	DESIGN THINKING	3-0-0	3	-
	6	223AGE005	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-
В	7	223AGE006	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-
	8	223AGE007	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-
	9	223AGE008	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-
	10	223AGE009	PRINCIPLES OF AUTOMATION	3-0-0	3	-
	11	223AGE010	REUSE AND RECYCLE TECHNOLOGY	3-0-0	3	-
	12	223AGE011	SYSTEM MODELING	3-0-0	3	-
	13	223AGE012	EXPERT SYSTEMS	3-0-0	3	-

	SEMESTER IV						
SLOT	COURSE	COURSE NAME	MARKS		L-T-P	HOURS	CREDIT
	CODE		CIA	ESE			
	TRACK 1						
А	224PCS100	DISSERTATION PHASE II	100	100	0-0-24	24	16
		TRACK	ζ2				
А	224PCS001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16
	Т	otal	100	100		24	16

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project: 20 marks

Course based task/Seminar/Quiz: 10 marks

Test paper, 1 no: 10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be 150 minutes.

(ii) ELECTIVE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer revi	ewed
Original publications (minimum 10	15
Course based task/Seminar/Data	: 15 marks
collection and interpretation	: 15 marks
Test paper, 1 no.	: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT

COURSEContinuous Internal Evaluation: 40

marks

Course based task	: 15 marks
Seminar/Quiz	: 15 marks
Test paper, 1 no.	: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of

problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering educationsystem. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed Original publications (minimum 10 publications shall be referred) : 15 marks Course based task/Seminar/Data collection and interpretation : 15 marks Testpaper, 1 no. : 10

marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) **MINIPROJECT**

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather

than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.

- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions

from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

MTECH 2022

Discipline : ELECTRONICS & COMMUNICATION ENGINEERING

Stream: COMMUNICATION SYSTEMS

SEMESTER I

SLOT	COURSE	COURSENAME	MARKS		L-T-P	HOURS	CREDIT
5101	CODE		CIA	ESE			
А	221TEC100	ADVANCED ENGINEERING MATHEMATICS	40	60	3-0-0	3	3
В	221TEC008	ADVANCED DIGITAL COMMUNICATION	40	60	3-0-0	3	3
С	221TEC009	COMMUNICATION NETWORKS	40	60	3-0-0	3	3
D	221EECXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
E	221EECXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LEC004	COMMUNICATION SYSTEMS LAB I	100		0-0-2	2	1
Total			340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

	PROGRAM ELECTIVE 1								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	221EEC044	IMAGE AND VIDEO PROCESSING	3-0-0	3	3			
	2	221EEC045	WIRELESS AD HOC AND SENSOR NETWORKS	3-0-0	3	3			
D	3	221EEC046	ESTIMATION AND DETECTION THEORY	3-0-0	3	3			
	4	221EEC047	ULTRA WIDEBAND COMMUNICATION SYSTEMS	3-0-0	3	3			
	5	5 221EEC017 ANTENNA THEORY AND DESIGN		3-0-0	3	3			
	6	221EEC048	SPEECH TECHNOLOGY	3-0-0	3	3			

PROGRAM ELECTIVE 2

	PROGRAM ELECTIVE 2							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	221EEC049	ADVANCED MACHINE LEARNING FOR COMMUNICATION	3-0-0	3	3		
	2	221EEC039	VLSI SIGNAL PROCESSING	3-0-0	3	3		
	3	221EEC050	ERROR CONTROL CODES	3-0-0	3	3		
Ε	4	221EEC051	MOBILE CELLULAR COMMUNICATION	3-0-0	3	3		
	5	221EEC038	ADAPTIVE FILTERS AND SYSTEMS	3-0-0	3	3		
	6	221EEC052	MULTIMEDIA COMPRESSION TECHNIQUES	3-0-0	3	3		

	SEMESTER II							
SLOT	COURSE	COURSENAME	MA	MARKS		HOURS	CREDIT	
5201	CODE		CIA	ESE				
А	222TEC100	FOUNDATIONS OF DATA SCIENCE	40	60	3-0-0	3	3	
В	222TEC005	WIRELESS COMMUNICATION	40	60	3-0-0	3	3	
С	222EECXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3	
D	222EECXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3	
E	222EECXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3	
S	222PEC100	MINI PROJECT	100		0-0-4	4	2	
Т	222LEC004	COMMUNICATION SYSTEM LAB 2	100		0-0-2	2	1	
Total			400	300		21	18	

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

	PROGRAM ELECTIVE 3								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222EEC046	MULTIRATE SYSTEMS AND WAVELETS	3-0-0	3	3			
	2	222EEC047	ADVANCED INFORMATION THEORY	3-0-0	3	3			
С	3	222EEC048	MIMO AND MILLIMETER WAVE COMMUNICATION	3-0-0	3	3			
	4	222EEC026	RF MEMS	3-0-0	3	3			
	5	222EEC049	OPTICAL COMMUNICATION AND NETWORKS	3-0-0	3	3			
	6	222EEC001	INTERNET OF THINGS	3-0-0	3	3			

PROGRAM ELECTIVE 4

	PROGRAM ELECTIVE 4							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222EEC050	QUANTUM INFORMATION SYSTEMS	3-0-0	3	3		
	2	222EEC051	MULTICARRIER AND MULTIUSER COMMUNICATION	3-0-0	3	3		
D	3	222EEC052	COGNITIVE AND SOFTWARE DEFINED RADIO	3-0-0	3	3		
	4	222EEC029	RF CIRCUIT DESIGN	3-0-0	3	3		
	5	222EEC053	SECURE COMMUNICATION AND NETWORK SECURITY	3-0-0	3	3		
	6	222EEC054	REAL TIME EMBEDDED SYSTEMS	3-0-0	3	3		

INTERDISCIPLINARY ELECTIVE

	INTERDISCIPLINARY ELECTIVE								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222EEC083	AUTOMOTIVE ELECTRONICS	3-0-0	3	3			
Е	2	222EEC084	MEMS AND SENSORS	3-0-0	3	3			
	3	222EEC085	NANO MATERIALS FOR DRUG DELIVERY	3-0-0	3	3			

INDUSTRY ELECTIVE

SEMESTER III

SLOT	COURSE	COURSE NAME		RKS	L-T-P	HOURS	CREDIT			
	CODE		CIA	ESE						
	TRACK 1									
A*	223MECXXX	моос	To be completed successfully				2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEC100	INTERNSHIP	50	50			3			
D	223PEC100	DISSERTATION PHASE 1	100		0-0-17	17	11			
		TRACK	2							
A*	223MECXXX	моос	To comj succe	b be pleted essfully			2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEC100	INTERNSHIP	50	50			3			
D	223PEC001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11			
	Ţ	Гotal	190	110		20	16			

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourthsemester (starting from semester 1).

AUDIT COURSE SL COURSE SLOT L-T-P HOURS **CREDIT COURSE NAME** NO CODE 1 223AGE100 ACADEMIC WRITING 3-0-0 3 -ADVANCED ENGINEERING 2 223AGE001 3-0-0 3 -MATERIALS 223AGE002 FORENSIC ENGINEERING 3 3-0-0 3 -DATA SCIENCE FOR 223AGE003 3-0-0 4 3 -ENGINEERS DESIGN THINKING 3 5 223AGE004 3-0-0 -FUNCTIONAL PROGRAMMING 6 223AGE005 3-0-0 3 -IN HASKELL FRENCH LANGUAGE (A1 7 223AGE006 3-0-0 3 В LEVEL) GERMAN LANGUAGE (A1 8 223AGE007 3-0-0 3 _ LEVEL) JAPANESE LANGUAGE (N5 9 223AGE008 3-0-0 3 _ LEVEL) 10 223AGE009 PRINCIPLES OF AUTOMATION 3-0-0 3 -REUSE AND RECYCLE 223AGE010 3-0-0 3 11 -TECHNOLOGY 12 223AGE011 SYSTEM MODELING 3-0-0 3 -EXPERT SYSTEMS 13 223AGE012 3-0-0 3 -

AUDIT COURSE

SEMESTER IV											
SLOT	COURSE	COURSE NAME	MARKS		MARKS		MARKS		L-T-P	HOURS	CREDIT
	CODE		CIA	ESE							
TRACK 1											
А	224PEC100	DISSERTATION PHASE II	100	100	0-0-24	24	16				
		TRACE	Κ2								
А	224PEC001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16				
Total			100	100		24	16				

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project:	20 marks
Course based task/Seminar/Quiz:	10 marks
Test paper, 1 no:	10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be150 minutes.

(ii) **ELECTIVE COURSES**

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original publications (minimum 10	15 marks
Publications shall be referred):	
Course based task/Seminar/Data	15 marks
Collection and interpretation:	
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation:	40 marks
Course based task:	15 marks
Seminar/Quiz:	15 marks
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed intop industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinaryapproaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original	publication	s (minimum 10	15 marks
publications shall be referred):			
Course	based	task/Seminar/Data	15 marks
collection and interpretation:			
Test paper, 1 no:			10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum

duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests.Make sure that you work out the solutions to the

questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.
M.TECH. 2022

Discipline : Electrical & Electronics Engineering **Stream:** Industrial Instrumentation and Control

SEMESTER I

CL OT	COURSE	COUDCE NAME	MA	RKS	гтр	HOUDE	CDEDIT
SLUI	CODE	COURSENAME	CIA ESE		L-1-P	HOURS	CREDIT
А	221TEE100	LINEAR ALGEBRA AND LINEAR SYSTEMS	40	60	3-0-0	3	3
В	221TEE013	DISCRETE TIME CONTROL SYSTEMS	40	60	3-0-0	3	3
С	221TEE014	OPTIMAL CONTROL THEORY	40	60	3-0-0	3	3
D	221EXXXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
Е	221EXXXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LEE004	DESIGN AND SIMULATION LAB	100		0-0-2	2	1
Total			340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

	PROGRAM ELECTIVE 1									
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT				
	1	221EEE070	INTRODUCTION TO FLIGHT	3-0-0	3	3				
	2	221EEE030	221EEE030 MACHINE LEARNING 3		3	3				
	3	221EIA002	EMBEDDED SYSTEMS AND APPLICATIONS	3-0-0	3	3				
D	4	221EEE100	ADVANCED POWER SEMICONDUCTOR DEVICES	3-0-0	3	3				
	5	221EIA001	ANALOG AND DIGITAL INSTRUMENTATION	3-0-0	3	3				
	6	221EEE049	ROBOTIC SYSTEMS AND CONTROL	3-0-0	3	3				

PROGRAM ELECTIVE 2

	PROGRAM ELECTIVE 2						
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	221EEE054MODELING AND SIMULATION OF AEROSPACE SYSTEMS3-0		3-0-0	3	3	
	2	221EIA003 IMAGE PROCESSING 3-		3-0-0	3	3	
Е	3	221EIA004	PROCESS CONTROL AND INSTRUMENTATION	3-0-0	3	3	
	4	221EIA005	BIOSIGNAL PROCESSING	3-0-0	3	3	
	5	221EEE056	56 GAME THEORY		3	3	
	6	221EEE055	ADVANCED CONTROL SYSTEM DESIGN	3-0-0	3	3	

SEMESTER II

CL OT	COURSE	COUDSENAME	COURSENAME MARKS		HOUDE	CDEDIT	
2101	CODE	COURSENAME	CIA	ESE	L-I-P	HUUKS	CREDIT
А	222TEE100	COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING	40	60	3-0-0	3	3
В	222TEE007	NONLINEAR DYNAMIC SYSTEMS AND CONTROL	40	60	3-0-0	3	3
С	222EXXXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222EXXXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
E	222EEXXXX/ 222EIAXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PEE100	MINI PROJECT	100		0-0-4	4	2
Т	222LEE004	ADVANCED CONTROL LAB	100		0-0-2	2	1
Total			400	300		21	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

PROGRAM ELECTIVE 3									
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222EEE073	FLIGHT DYNAMICS AND CONTROL	3-0-0	3	3			
	2	222EEE029	DEEP LEARNING	3-0-0	3	3			
C	3	222EEE028	SLIDING MODE CONTROL	3-0-0	3	3			
ŭ	4	222EEE050	ESTIMATION THEORY	3-0-0	3	3			
	5	222EEE051	ADAPTIVE CONTROL	3-0-0	3	3			
	6	222EEE049	STOCHASTIC CONTROL	3-0-0	3	3			

PROGRAM ELECTIVE 4

	PROGRAM ELECTIVE 4								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222EEE052	GUIDANCE AND CONTROL OF MISSILES 3-0		3	3			
	2	222EEE074	INDUSTRIAL DRIVES AND CONTROL	3-0-0	3	3			
D	3	222EEE053	ROBUST CONTROL	3-0-0	3	3			
	4	222EEE054	SYSTEM IDENTIFICATION	3-0-0	3	3			
	5	222EIA001	ADVANCED INSTRUMENTATION	3-0-0	3	3			
	6	222EEE055	MULTI AGENT SYSTEMS	3-0-0	3	3			

INTERDISCIPLINARY ELECTIVE

INTERDISCIPLINARY ELECTIVE									
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
E	1	222EIA070	BIOMEDICAL ENGINEERING	3-0-0	3	3			
	2	222EEE071	ELECTRIC CHARGING SYSTEMS FOR ELECTRICAL VEHICLES	3-0-0	3	3			
	3	222EIA072	ANALOG AND DIGITAL INSTRUMENTATION	3-0-0	3	3			

INDUSTRY ELECTIVE

SEMESTER III

SLOT	COURSE	COUDSENAME	MA	RKS	гтр	HOUDS	CDEDIT			
SLUI	CODE	COURSENAME	CIA	ESE	L-I-P	HUUKS	CREDIT			
	TRACK 1									
A*	223MEEXXX	моос	To be completed successfully				2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEE100	INTERNSHIP	50	50			3			
D	223PEE100	DISSERTATION PHASE 1	100		0-0-17	17	11			
		TRACK	Χ2							
A*	223MEEXXX	моос	To comp succes	o be pleted ssfully			2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEE100	INTERNSHIP	50	50			3			
D	223PEE001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11			
Total			190	110		20	16			

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1).

AUDIT COURSE SL COURSE SLOT L-T-P HOURS **CREDIT COURSE NAME** NO CODE 1 223AGE100 ACADEMIC WRITING 3-0-0 3 -ADVANCED ENGINEERING 2 223AGE001 3-0-0 3 _ MATERIALS 223AGE002 FORENSIC ENGINEERING 3 3 3-0-0 -DATA SCIENCE FOR 223AGE003 3-0-0 4 3 -ENGINEERS 5 DESIGN THINKING 3 223AGE004 3-0-0 -FUNCTIONAL PROGRAMMING 6 223AGE005 3-0-0 3 -IN HASKELL FRENCH LANGUAGE (A1 7 223AGE006 3-0-0 3 В LEVEL) GERMAN LANGUAGE (A1 8 223AGE007 3-0-0 3 _ LEVEL) JAPANESE LANGUAGE (N5 9 223AGE008 3-0-0 3 _ LEVEL) 10 223AGE009 PRINCIPLES OF AUTOMATION 3-0-0 3 -REUSE AND RECYCLE 223AGE010 3-0-0 3 11 -TECHNOLOGY 12 223AGE011 SYSTEM MODELING 3-0-0 3 -EXPERT SYSTEMS 13 223AGE012 3-0-0 3 -

AUDIT COURSE

SEMESTER IV								
SI OT	COURSE	COUDSE NAME	MA	RKS	LTD	HOUDE	CREDIT	
SLUI	CODE	COURSENAME	CIA	ESE	L-1-P	HUURS	CREDIT	
TRACK 1								
А	224PPE100	DISSERTATION PHASE II	100	100	0-0-24	24	16	
TRACK 2								
А	224PPE001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16	
Total				100		24	16	

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project:	20 marks
Course based task/Seminar/Quiz:	10 marks
Test paper, 1 no:	10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be150 minutes.

(ii) **ELECTIVE COURSES**

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original publications (minimum 10	15 marks
Publications shall be referred):	
Course based task/Seminar/Data	15 marks
Collection and interpretation:	
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation:	40 marks
Course based task:	15 marks
Seminar/Quiz:	15 marks
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed intop industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original	publication	s (minimum 10	15 marks
publication	is shall be re	eferred):	
Course	based	task/Seminar/Data	15 marks
collection	and interpre	etation:	
Test paper	, 1 no:		10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum

duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of

study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests.Make sure that you work out the solutions to the

questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline: ELECTRICAL & ELECTRONICS ENGINEERING **Stream:** POWER SYSTEMS

SEMESTER I

SLOT	COURSE	COURSENAME	MA	RKS	L-T-P	HOURS	CREDIT
5201	CODE		CIA	ESE	211	110 0110	
А	221TEE100	LINEAR ALGEBRA AND LINEAR SYSTEMS	40	60	3-0-0	3	3
В	221TEE003	POWER SYSTEM DYNAMICS AND CONTROL	40	60	3-0-0	3	3
С	221TEE004	POWER ELECTRONIC APPLICATION IN POWER SYSTEMS	40	60	3-0-0	3	3
D	221EEEXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
E	221EEEXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LEE001	POWER SYSTEM LAB I	100		0-0-2	2	1
		Total	340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

	PROGRAM ELECTIVE 1					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	221EEE012	ADVANCED POWER SYSTEM ANALYSIS	3-0-0	3	3
	2	221EEE013	DESIGN OF RENEWABLE ENERGY SYSTEMS	3-0-0	3	3
	3	221EEE014	SMART GRID TECHNOLOGIES AND APPLICATION	3-0-0	3	3
D	4	221EEE015	DESIGN AND ANALYSIS OF MICROGRIDS	3-0-0	3	3
	5	221EEE016	POWER SYSTEM PLANNING AND RELIABILITY	3-0-0	3	3
	6	221EEE017	FLEXIBLE AC TRANSMISSION SYSTEM	3-0-0	3	3

PROGRAM ELECTIVE 2

	PROGRAM ELECTIVE 2						
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
E	1	221EEE019	DIGITAL PROTECTION OF POWER SYSTEMS	3-0-0	3	3	
	2	221EEE020	POWER SYSTEM INSTRUMENTATION	3-0-0	3	3	
	3	221EEE021	RESTRUCTURED POWER SYSTEM	3-0-0	3	3	
	4	221EEE022	CUSTOM POWER DEVICES	3-0-0	3	3	
	5	221EEE023	E-MOBILITY	3-0-0	3	3	
	6	221EEE024	TRANSIENT ANALYSIS IN POWER SYSTEM	3-0-0	3	3	

SEMESTER II

SLOT	COURSE	COURSENAME	MA	RKS	I.T.P	HOURS	CREDIT
SLUI	CODE	COURSE NAME	CIA	ESE	L-1-1	noons	CREDIT
		COMPUTATIONAL					
А	222TEE100	TECHNIQUES IN	40	60	60 3-0-0	3	3
		ELECTRICAL	10	00		5	
		ENGINEERING					
		POWER SYSTEM					
В	222TEE002	OPERATION AND	40	60	3-0-0	3	3
		CONTROL					
C	222EEEXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222EEEXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
	222EEXXXX	INDUSTRY/					
F	/		40	60	200	2	2
Ľ		INTERDISCIPLINARY	40	00	3-0-0	5	5
	222EEEXXX	ELECTIVE					
S	222PEE100	MINI PROJECT	100		0-0-4	4	2
Т	222LEE001	POWER SYSTEM LAB II	100		0-0-2	2	1
Total			400	300		21	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

			PROGRAM ELECTIVE 3			
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	222EEE012	EMBEDDED PROCESSORS AND CONTROLLERS	3-0-0	3	3
С	2	222EEE013	POWER CONVERSION TECHNIQUES IN POWER SYSTEMS	3-0-0	3	3
	3	222EEE027	MODELING AND SIMULATION OF POWER ELECTRONIC SYSTEMS	3-0-0	3	3
	4	222EEE015	CONTROL TECHNIQUES FOR POWER ELECTRONIC SYSTEMS	3-0-0	3	3
	5	222EEE024	HYBRID AND ELECTRIC VEHICLES	3-0-0	3	3
	6	222EEE017	APPLICATION OF AI IN POWER SYSTEMS	3-0-0	3	3

PROGRAM ELECTIVE 4

PROGRAM ELECTIVE 4						
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	222EEE018	ADVANCED OPTIMIZATION TECHNIQUES	3-0-0	3	3
D	2	222EE019	POWER SYSTEM AUTOMATION	3-0-0	3	3
	3	222EEE016	NONLINEAR CONTROL SYSTEMS	3-0- 0	3	3
	4	222EEE021	DISTRIBUTION SYSTEM ANALYSIS		3	3
	5	222EEE026	ENERGY STORAGE SYSTEMS	3-0-0	3	3

INTERDISCIPLINARY ELECTIVE

	INTERDISCIPLINARY ELECTIVE							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222EEE070	ENERGY EFFICIENCY IN ELECTRICAL ENGINEERING	3-0-0	3	3		
Е	2	222EEE071	ELECTRIC CHARGING SYSTEMS FOR ELECTRICAL VEHICLES	3-0-0	3	3		
	3	222EEE072	DESIGN AND INSTALLATION OF SOLAR PV SYSTEMS	3-0-0	3	3		

INDUSTRY ELECTIVE

SEMESTER III

SLOT	COURSE	COURSENAME	MA	RKS	I.T.P	HOURS	CREDIT			
SLOT	CODE	COURSENAME	CIA	ESE	L-1-1	noons	CREDIT			
	TRACK 1									
A*	223MEEXX X	моос	To com succe	o be pleted essfully			2			
В	223AGEXX X	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEE100	INTERNSHIP	50	50			3			
D	223PEE100	DISSERTATION PHASE 1	100		0-0-17	17	11			
		TRACK	Κ2							
A*	223MEEXX X	моос	To comj succe	o be pleted essfully			2			
В	223AGEXX X	AUDIT COURSE	40	60	3-0-0	3	-			
С	223IEE100	INTERNSHIP	50	50			3			
D	223PEE001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11			
		Total	190	110		20	16			

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement offourth semester (starting from semester 1).

AUDIT COURSE

	AUDIT COURSE					
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	223AGE100	ACADEMIC WRITING	3-0-0	3	-
	2 223AGE001 ADVANCED ENGINEERING MATERIALS 3.		3-0-0	3	-	
	3	223AGE002	FORENSIC ENGINEERING	3-0-0	3	-
	4	223AGE003 DATA SCIENCE FOR ENGINEERS		3-0-0	3	-
	5	223AGE004	DESIGN THINKING	3-0-0	3	-
	6	223AGE005	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-
В	7	223AGE006	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-
	8	223AGE007	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-
	9	223AGE008	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-
	10	223AGE009	PRINCIPLES OF AUTOMATION	3-0-0	3	-
	11	11 223AGE010 REUSE AND RECYCLE TECHNOLOGY		3-0-0	3	-
	12	223AGE011	SYSTEM MODELING	3-0-0	3	-
	13	223AGE012	EXPERT SYSTEMS	3-0-0	3	-

SEMESTER IV

CI OT	COURSE	COUDSENAME	MA	RKS	гтр	UOUDC	CDEDIT
SLU I	CODE	COURSE NAME	CIA	ESE	L-1-P	HUUKS	CKEDII
TRACK 1							
А	224PIA100	DISSERTATION PHASE II	100	100	0-0-24	24	16
		TRACK	K 2				
А	224PIA001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16
Total			100	100		24	16

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project:	20 marks
Course based task/Seminar/Quiz:	10 marks
Test paper, 1 no:	10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be150 minutes.

(ii) ELECTIVE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original publications (minimum 10	15 marks
Publications shall be referred):	
Course based task/Seminar/Data	15 marks
Collection and interpretation:	
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation:	40 marks		
Course based task:	15 marks		
Seminar/Quiz:	15 marks		
Test paper, 1 no.:	10 marks		

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks Preparing a review article based on peer reviewed Original publications (minimum 10 publications shall be referred):

Coursebasedtask/Seminar/Data15 markscollection and interpretation:

Test paper, 1 no:

10 marks

15 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the

concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All MTech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the

questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline:	Mechanical Engineering
Stream:	Industrial Refrigeration and Cryogenics

SEMESTER I

CI OT	COURSE	COURSE NAME	MARKS		LTD		CDEDIT
SLUI	CODE		CIA	ESE	L-I-P	HOURS	CREDIT
А	221TME100	COMPUTATIONAL METHODS FOR ENGINEERS	40	60	3-0-0	3	3
В	221TME013	APPLIED THERMODYNAMICS AND FLUID MECHANICS	40	60	3-0-0	3	3
С	221TME014	CRYOGENIC ENGINEERING	40	60	3-0-0	3	3
D	221EMExxx	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
Е	221EMExxx	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LME006	REFRIGERATION AND CRYOGENIC ENGINEERING LAB	100		0-0-2	2	1
Total			340	360		19	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

PROGRAM ELECTIVE 1							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
D	1	221EME071	ADVANCED HEAT AND MASS TRANSFER	3-0-0	3	3	
	2	221EME072	DESIGN OF HEAT TRANSFER EQUIPMENT	3-0-0	3	3	

PROGRAM ELECTIVE 2

PROGRAM ELECTIVE 2						
SLOT SL COURSE NO CODE COURSE NAME		L-T-P	HOURS	CREDIT		
	1	221EME077	REFRIGERATION SYSTEMS	3-0-0	3	3
E	2	221EME078	HEAT PUMP AND ENERGY RECOVERY SYSTEMS	3-0-0	3	3

SEMESTER II

COURSE			MARKS				
SLUT	CODE	COURSE NAME	CIA	ESE	L-T-P	HOURS	CREDIT
А	222TME100	DESIGN OF EXPERIMENTS	40	60	3-0-0	3	3
В	222TME007	DESIGN OF CRYOGENIC EQUIPMENT AND SYSTEMS	40	60	3-0-0	3	3
С	222TMExxx	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222EMExxx	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
Е	222EMExxx /222EEXXX X	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PME100	MINI PROJECT	100		0-0-4	4	2
Т	222LME002	COMPUTATIONAL FLUID DYNAMICS LAB	100		0-0-2	2	1
Total			400	300		21	18

Teaching Assistance: 6 hours
PROGRAM ELECTIVE 3

PROGRAM ELECTIVE 3										
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT				
С	1	222EME047	COMPUTATIONAL FLUID DYNAMICS		3	3				
	2	222EME071	FINITE ELEMENT ANALYSIS FOR HEAT TRANSFER	3-0-0	3	3				
	3	222EME072	FINITE VOLUME METHOD FOR FLUID FLOW AND HEAT TRANSFER	3-0-0	3	3				

PROGRAM ELECTIVE 4

PROGRAM ELECTIVE 4										
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT				
D	1	222EME076	976SPACE CRYOGENICS		3	3				
	2	222EME077	CRYOGENIC HEAT TRANSFER	3-0-0	3	3				
	3	222EME078	INDUSTRIAL REFRIGERATION	3-0-0	3	3				

INTERDISCIPLINARY ELECTIVE

INTERDISCIPLINARY ELECTIVE									
SLOT SL NO COURSE CODE COURSE NAME				L-T-P	HOURS	CREDIT			
Е	1	222EME10 3	INTERNET OF THINGS	3-0-0	3	3			
	2	222EME10 4	DIGITAL PRODUCT DESIGN AND MANUFACTURING	3-0-0	3	3			
	3	222EME10 5	RELIABILITY ENGINEERING	3-0-0	3	3			

INDUSTRY ELECTIVE

SEMESTER III

CI OT	COURSE	COUDSE NAME	MA	RKS	гтр	HOUDE	CDEDIT	
SLUI	CODE	COURSE NAME	CIA	ESE	L-1-P	HUUKS	CKEDII	
		TRACI	K 1					
A*	223MMEXXX	моос	To comj succes	o be pleted ssfully			2	
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-	
С	223IME100	INTERNSHIP	50	50			3	
D	223PME100	DISSERTATION PHASE 1	100		0-0-17	17	11	
		TRACE	K 2					
A*	223MMEXXX	моос	To comj succes	o be pleted ssfully			2	
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-	
С	223IME100	INTERNSHIP	50	50			3	
D	223PME001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11	
Total			190	110		20	16	

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement offourth semester (starting from semester 1).

AUDIT COURSE

	AUDIT COURSE								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	223AGE100	ACADEMIC WRITING	3-0-0	3	-			
	2	223AGE001	ADVANCED ENGINEERING MATERIALS	3-0-0	3	-			
	3	223AGE002	FORENSIC ENGINEERING	3-0-0	3	-			
	4	223AGE003	DATA SCIENCE FOR ENGINEERS	3-0-0	3	-			
	5	223AGE004	DESIGN THINKING	3-0-0	3	-			
	6	223AGE005	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-			
В	7	223AGE006	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-			
	8	223AGE007	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-			
	9	223AGE008	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-			
	10	223AGE009	PRINCIPLES OF AUTOMATION	3-0-0	3	-			
	11	223AGE010	REUSE AND RECYCLE TECHNOLOGY	3-0-0	3	-			
	12	223AGE011	SYSTEM MODELING	3-0-0	3	-			
	13	223AGE012	EXPERT SYSTEMS	3-0-0	3	-			

SEMESTER IV

SLOT	COURSE CODE	COURSE NAME	MARKS CIA ESE		L-T-P	HOURS	CREDIT				
	CODE		<u> </u>								
А	224PME100	Dissertation Phase II	100	100	0-0-24	24	16				
	TRACK 2										
А	224PME001	Research Project Phase II	100	100	0-0-24	24	16				
Total			100	100		24	16				

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project:	20 marks
Course based task/Seminar/Quiz:	10 marks
Test paper, 1 no:	10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be150 minutes.

(ii) **ELECTIVE COURSES**

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed	
Original publications (minimum 10	15 marks
Publications shall be referred):	
Course based task/Seminar/Data	15 marks
Collection and interpretation:	
Testpaper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation: 40 marks

Course based task:	15 marks
Seminar/Quiz:	15 marks
Testpaper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in

top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original	publication	s (minimum	10		15 marks			
publication	ıs shall be re	eferred):						
Course	based	task/Seminar/I	Data		15 marks			
collection	collection and interpretation:							
Test paper	, 1 no:				10 marks			

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the

concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

(i) Meet the faculty – in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the

experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.

- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline: Mechanical Engineering

Stream:

Computer Integrated Manufacturing

SEMESTER I

CI OT	COURSE		MA	RKS	LTD	HOUDC	CDEDIT	
SLUI	CODE	COURSE NAME	CIA	ESE	L-I-P	HOURS	CREDIT	
А	221TME100	COMPUTATIONAL METHODS FOR ENGINEERS	40	60	3-0-0	3	3	
В	221TME007	ROBOTICS AND AUTOMATION	40	60	3-0-0	3	3	
С	221TME008	CAD /CAM	40	60	3-0-0	3	3	
D	221EMExxx	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3	
Е	221EMExxx	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3	
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2	
Т	221LME003	ADVANCED MANUFACTURING LAB 1	100		0-0-2	2	1	
Total			340	360		19	18	

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

PROGRAM ELECTIVE 1										
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT				
	1	221EME036	COMPOSITE MATERIALS	3-0-0	3	3				
D	2	221EME037	FINITE ELEMENT ANALYSIS	3-0-0	3	3				
	3	221EME038	DESIGN FOR MANUFACTURING	3-0-0	3	3				

PROGRAM ELECTIVE 2

PROGRAM ELECTIVE 2							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	221EME042	PRODUCTION AND OPERATIONS MANAGEMENT	3-0-0	3	3	
Е	2	221EME043	SOFT COMPUTING TECHNIQUES	3-0-0	3	3	
	3	221EME044	NANO MICRO MANUFACTURING	3-0-0	3	3	

SEMESTER II

CLOT	COURSE	COUDSENAME	MA	RKS	LTD	HOUDE	CDEDIT
SLUT	CODE	COURSE NAME	CIA	ESE	L-I-P	HOURS	CREDIT
А	222TME100	DESIGN OF EXPERIMENTS	40	60	3-0-0	3	3
В	222TME004	MODERN MANUFACTURING SYSTEMS	40	60	3-0-0	3	3
С	222TMExxx	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222EMExxx	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
E	222EMExxx /222EEXXX X	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PME100	MINI PROJECT	100		0-0-4	4	2
Т	222LME003	ADVANCED MANUFACTURING LAB 2	100		0-0-2	2	1
		Total	400	300		21	18

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

PROGRAM ELECTIVE 3							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	221EME035	CELLULAR MANUFACTURING AND GROUP TECHNOLOGY	3-0-0	3	3	
С	2	221EME036	ENTERPRISE RESOURCE PLANNING	3-0-0	3	3	
	3	221EME037	FLEXIBLE MANUFACTURING SYSTEMS	3-0-0	3	3	

PROGRAM ELECTIVE 4

PROGRAM ELECTIVE 4							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	222EME041	COMPUTER AIDED MEASUREMENTS	3-0-0	3	3	
D	2	222EME042	MODELING AND SIMULATION OF ENGINEERING SYSTEM	3-0-0	3	3	
	3	222EME043	OPTIMIZATION TECHNIQUES	3-0-0	3	3	

INTERDISCIPLINARY ELECTIVE

INTERDISCIPLINARY ELECTIVE							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT	
	1	222EME103	INTERNET OF THINGS	3-0-0	3	3	
Е	2	222EME104	DIGITAL PRODUCT DESIGN AND MANUFACTURING	3-0-0	3	3	
	3	222EME105	RELIABILITY ENGINEERING	3-0-0	3	3	

INDUSTRY ELECTIVE

SEMESTER III

CI OT	COURSE	OURSE CODECOURSE NAMEMARKSCODECIAESE		RKS	I_T_D		
SLUI	CODE			ESE	L-1-P	HUUKS	CREDIT
		TRACH	K 1				
A*	223MMEXXX	MOOC	To comj succe	To be completed successfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223IME100	INTERNSHIP	50	50			3
D	223PME100	DISSERTATION PHASE 1	100		0-0-17	17	11
		TRACK	K 2				
A*	223MMEXXX	моос	To comp succes	b be bleted ssfully			2
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-
С	223IME100	INTERNSHIP	50	50			3
D	223PME001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11
Total			190	110		20	16

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement offourth semester (starting from semester 1).

AUDIT COURSE

AUDIT COURSE						
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	223AGE100	ACADEMIC WRITING 3-		3	-
	2	223AGE001	ADVANCED ENGINEERING MATERIALS	3-0-0	3	-
	3	223AGE002	FORENSIC ENGINEERING	3-0-0	3	-
	4	223AGE003	DATA SCIENCE FOR ENGINEERS	3-0-0	3	-
	5	223AGE004	DESIGN THINKING	3-0-0	3	-
	6	223AGE005	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-
В	7	223AGE006	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-
	8	223AGE007	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-
	9	223AGE008	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-
	10	223AGE009	PRINCIPLES OF AUTOMATION	3-0-0	3	-
	11	223AGE010	REUSE AND RECYCLE TECHNOLOGY	3-0-0	3	-
	12	223AGE011	SYSTEM MODELING	3-0-0	3	-
	13	223AGE012	EXPERT SYSTEMS	3-0-0	3	-

SEMESTER IV

SLOT	COURSE CODE	COURSE NAME	MARKS CIA ESE		L-T-P	HOURS	CREDIT	
	TRACK 1							
А	224PME100	Dissertation Phase II	100	100	0-0-24	24	16	
	TRACK 2							
А	224PME001	Research Project Phase II	100	100	0-0-24	24	16	
Total			100	100		24	16	

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project:	20 marks
Course based task/Seminar/Quiz:	10 marks
Test paper, 1 no:	10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be150 minutes.

(ii) **ELECTIVE COURSES**

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original publications (minimum 10	15 marks
Publications shall be referred):	
Course based task/Seminar/Data	15 marks
Collection and interpretation:	
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation:	40 marks
Course based task:	15 marks

Seminar/Quiz:	15 marks
Test paper, 1 no.:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem- solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary

approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed

Original	publication	s (minimum	10	15 marks		
publication	ıs shall be re	eferred):				
Course	based	task/Seminar/Dat	a	15 marks		
collection and interpretation:						
Test paper	10 marks					

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap

with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) **MINIPROJECT**

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or

tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

(i) Meet the faculty – in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.

- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know their level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline: Mechanical Engineering **Stream** : Artificial Intelligence

SEMESTER I								
SLOT	COURSE	COURSE NAME	MARKS		L-T-P	HOURS	CREDIT	
	CODE		CIA	ESE				
А	221TCS009	MACHINE LEARNING	40	60	3-0-0	3	3	
В	221TCS010	MATHEMATICS FOR MACHINE LEARNING	40	60	3-0-0	3	3	
С	221TCS011	FOUNDATIONS OF AI	40	60	3-0-0	3	3	
D	221ECSXXX	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3	
E	221ECSXXX	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3	
S	221RGE100	RESEARCH METHODOLOGY & IPR	40	60	2-0-0	2	2	
Т	221LCS003	AI AND ML LAB	100		0-0-2	2	1	
Total				360		19	18	

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 1

PROGRAM ELECTIVE 1								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
D	1	221ECS044	DATA STRUCTURES & ALGORITHMS	3-0-0	3	3		
	2	221ECS045	CYBER PHYSICAL SYSTEMS	3-0-0	3	3		
	3	221ECS046	ADAPTIVE SIGNAL PROCESSING	3-0-0	3	3		
	4	221ECS050	CONVEX OPTIMIZATION	3-0-0	3	3		
	5	221ECS047	ROBOTICS & AUTOMATION	3-0-0	3	3		
	6	221ECS048	CYBER FORENSICS	3-0-0	3	3		

PROGRAM ELECTIVE 2

PROGRAM ELECTIVE 2								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
Е	1	221ECS049	DATA ANALYTICS	3-0-0	3	3		
	2	221ECS007	PATTERN RECOGNITION	3-0-0	3	3		
	3	221ECS011	BIOINFORMATICS	3-0-0	3	3		
	4	221ECS051	HEURISTIC METHODS	3-0-0	3	3		
	5	221ECS052 GAME THEORY		3-0-0	3	3		
	6	221ECS053	SOFTWARE PROJECT MANAGEMENT	3-0-0	3	3		
Е	2 3 4 5 6	221ECS007 221ECS011 221ECS051 221ECS052 221ECS053	PATTERN RECOGNITION BIOINFORMATICS HEURISTIC METHODS GAME THEORY SOFTWARE PROJECT MANAGEMENT	3-0-0 3-0-0 3-0-0 3-0-0 3-0-0	3 3 3 3 3			

SEMESTER II								
SLOT	COURSE	COURSE NAME	MA	RKS	L-T-P	HOURS	CREDIT	
	CODE		CIA	ESE				
А	222TCS005	DEEP LEARNING THEORY AND PRACTICE	40	60	3-0-0	3	3	
В	222TCS006	OPTIMIZATION TECHNIQUES	40	60	3-0-0	3	3	
С	222ECSXXX	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3	
D	222ECSXXX	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3	
E	222ECSXXX	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3	
S	222PCS100	MINI PROJECT	100		0-0-4	4	2	
Т	222LCS001	DEEP LEARNING LAB	100		0-0-2	2	1	
Total				300		21	18	

Teaching Assistance: 6 hours

PROGRAM ELECTIVE 3

PROGRAM ELECTIVE 3								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
С	1	222ECS044	DIGITAL IMAGE PROCESSING AND COMPUTER VISION	3-0-0	3	3		
	2	222ECS045	NATURAL LANGUAGE PROCESSING	3-0-0	3	3		
	3	222ECS046	AI IN MEDICINE	3-0-0	3	3		
	4	222ECS100	BIG DATA ANALYTICS	3-0-0	3	3		
	5	222ECS048	RECOMMENDATION SYSTEMS	3-0-0	3	3		
	6	222ECS049	HUMAN COMPUTER INTERACTION	3-0-0	3	3		

PROGRAM ELECTIVE 4

PROGRAM ELECTIVE 4								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222ECS050	REINFORCEMENT LEARNING	3-0-0	3	3		
	2	222ECS047	SPEECH AND AUDIO PROCESSING	3-0-0	3	3		
D	3	222ECS051	GRAPH DATABASES FOR AI	3-0-0	3	3		
	4	222ECS052	EVOLUTIONARY COMPUTING	3-0-0	3	3		
	5	DATA VISUALIZATION TECHNIQUES		3-0-0	3	3		
	6	222ECS054	AI IN REMOTE SENSING	3-0-0	3	3		

INTERDISCIPLINARY ELECTIVE

INTERDISCIPLINARY ELECTIVE								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222ECS05 6	INTRODUCTION TO MACHINE LEARNING	3-0-0	3	3		
Е	2	222ECS05 7	DATA STRUCTURES	3-0-0	3	3		
	3	222ECS05 8	SOFTWARE PROJECT MANAGEMENT	3-0-0	3	3		

INDUSTRY ELECTIVE

SEMESTER III										
SLOT	COURSE CODE	COURSE NAME	MARKS CIA ESE		L-T-P	HOURS	CREDIT			
TRACK 1										
A*	223MCS100	моос	To com succe	b be pleted essfully			2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223ICS100	INTERNSHIP	50	50			3			
D	223PCS100	DISSERTATION PHASE 1	100		0-0-17	17	11			
		TRACK	X 2							
A*	223MCS100	моос	To com succe	o be pleted essfully			2			
В	223AGEXXX	AUDIT COURSE	40	60	3-0-0	3	-			
С	223ICS100	INTERNSHIP	50	50			3			
D	223PCS001	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11			
Total				110		20	16			

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of fourthsemester (starting from semester 1).

AUDIT COURSE COURSE SL SLOT L-T-P HOURS **COURSE NAME** CREDIT NO CODE 1 223AGE100 ACADEMIC WRITING 3-0-0 3 -ADVANCED ENGINEERING 2 223AGE001 3-0-0 3 -MATERIALS FORENSIC ENGINEERING 3 223AGE002 3-0-0 3 -DATA SCIENCE FOR 223AGE003 3-0-0 3 4 -**ENGINEERS** 5 223AGE004 DESIGN THINKING 3-0-0 3 -FUNCTIONAL PROGRAMMING 6 223AGE005 3-0-0 3 -IN HASKELL FRENCH LANGUAGE (A1 7 223AGE006 3-0-0 3 В _ LEVEL) GERMAN LANGUAGE (A1 8 223AGE007 3-0-0 3 -LEVEL) JAPANESE LANGUAGE (N5 9 223AGE008 3-0-0 3 -LEVEL) 10 223AGE009 PRINCIPLES OF AUTOMATION 3-0-0 3 -REUSE AND RECYCLE 11 223AGE010 3-0-0 3 -TECHNOLOGY 12 223AGE011 SYSTEM MODELING 3 3-0-0 -EXPERT SYSTEMS 13 223AGE012 3-0-0 3 -

AUDIT COURSE
	SEMESTER IV								
SLOT	COURSE	SE COURSE NAME		MARKS		HOURS	CREDIT		
5101	CODE		CIA	ESE		noons	CREDIT		
TRACK 1									
А	224PCS100	DISSERTATION PHASE II	100	100	0-0-24	24	16		
		TRACK	K 2						
А	224PCS001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16		
Total				100		24	16		

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project: 20 marks

Course based task/Seminar/Quiz: 10 marks

Test paper, 1 no: 10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be 150 minutes.

(ii) ELECTIVE COURSES

Evaluation shall only be based on application, analysis or design based questions (for both internal and end semester examinations).

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer rev	iewed
Original publications (minimum 10 publications shall be referred)	: 15 marks
Course based task/Seminar/Data	
collection and interpretation	: 15 marks
Test paper, 1 no.	: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation: 40 marks

Course based task	:	15 marks
Seminar/Quiz	:	15 marks
Test paper, 1 no.	:	10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which student should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem-solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfill the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as bigdata, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer reviewed Original publications (minimum 10 publications shall be referred) : 15 marks Course based task/Seminar/Data collection and interpretation : 15 marks Test paper, 1 no. : 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end semester examination. The students can do the MOOC according to their convenience, but shall complete it by third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective.

MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students whoever successfully completes the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. The introduction of mini projects ensures preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANCESHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather

than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.

- (iii) Keep track of the progress of each student in your group, give a periodic feedback to the student about his/her progress, issue warnings if the student is consistently underperforming, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if are and make sure that you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

- (i) Meet the faculty in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment / equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.
- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know there level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions

from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.

M.TECH. 2022

Discipline: Chemical Engineering

Stream: Industrial Safety and Engineering

SEMESTER 1

GL OT	COURSE	URSE COURSE NAME		MARKS		HOUDG	CDEDIZ
SLOT	CODE	COURSE NAME	CIA ESE L-T-P HOURS				
А	221TCH101	PROBABILITY AND STATISTICS FOR SAFETY ENGINEERING.	40	60	3-0-0	3	3
В	221TCH102	SAFETY IN CHEMICAL INDUSTRIES	40	60	3-0-0	3	3
С	221TCH103	RISK ANALYSIS AND HAZARD ASSESSMENT	40	60	3-0-0	3	3
D	221ECHxxx	PROGRAM ELECTIVE 1	40	60	3-0-0	3	3
Е	221ECHxxx	PROGRAM ELECTIVE 2	40	60	3-0-0	3	3
S	221RGE100	RESEARCH METHODOLOGY AND IPR	40	60	2-0-0	2	2
Т	221LCH001	INDUSTRIAL SAFETY LABORATORY - I	100		0-0-2	2	1
		Total	340	360		19	18

Teaching Assistance: 6 hours

PROGRAMME ELECTIVE 1

	PROGRAM ELECTIVE 1							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	221ECH101	OCCUPATIONAL HEALTH & SAFETY LEGISLATIONS	3-0-0	3	3		
D	2	221ECH103	SAFETY IN ONSHORE AND OFFSHORE DRILLING	3-0-0	3	3		
	3	221ECH105	INDUSTRIAL INSTRUMENTATION & CONTROL	3-0-0	3	3		
	4	221ECH107	SAFETY IN ELECTRICAL SYSTEMS	3-0-0	3	3		
	5	221ECH109	SAFETY IN CRYOGENIC MATERIAL HANDLING / PROCESSING	3-0-0	3	3		
	6	221ECH111	SAFETY ENGINEERING - I	3-0-0	3	3		

PROGRAMME ELECTIVE 2

	PROGRAM ELECTIVE 2							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	221ECH102	HUMAN FACTOR ENGINEERING	3-0-0	3	3		
	2	221ECH104	SAFETY IN FOOD & BIOPROCESS ENGINEERING	3-0-0	3	3		
E	3	221ECH106	DESIGN OF POLLUTION CONTROL SYSTEMS	3-0-0	3	3		
2	4	221ECH108	SAFETY IN HEALTH CARE WASTE MANAGEMENT	3-0-0	3	3		
	5	221ECH110	PIPING ENGINEERING DESIGN & ANALYSIS	3-0-0	3	3		
	6	221ECH112	FUEL & COMBUSTION TECHNOLOGY	3-0-0	3	3		

SEMESTER II

SI OT	COURSE	COURSENAME		MARKS		HOUDG	CDEDIT
SLOT	CODE	COURSE NAME	CIA	ESE	L-I-P	HOUKS	CREDIT
А	222TCH201	FIRE ENGINEERING AND EXPLOSION CONTROL	40	60	3-0-0	3	3
В	222TCH202	SAFETY MANAGEMENT	40	60	3-0-0	3	3
С	222ECHxxx	PROGRAM ELECTIVE 3	40	60	3-0-0	3	3
D	222ECHxxx	PROGRAM ELECTIVE 4	40	60	3-0-0	3	3
E	222ECHxxx	INDUSTRY/ INTERDISCIPLINARY ELECTIVE	40	60	3-0-0	3	3
S	222PCH100	MINI PROJECT	100		0-0-4	4	2
Т	222LCH002	INDUSTRIAL SAFETY LABORATORY - II	100		0-0-2	2	1
Total				300		21	18

Teaching Assistance: 6 hours

PROGRAMME ELECTIVE 3

	PROGRAM ELECTIVE 3								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
	1	222ECH201	PROCESS MODELLING & SIMULATION	3-0-0	3	3			
	2	222ECH203	DISASTER MANAGEMENT & EMERGENCY PLANNING	3-0-0	3	3			
	3	222ECH205	SAFETY ENGINEERING - II	3-0-0	3	3			
C	4	222ECH207	SAFETY IN POWDER HANDLING	3-0-0	3	3			
	5	222ECH209	SAFETY IN HAZARDOUS MATERIAL TRANSPORT	3-0-0	3	3			
	6	222ECH211	INDUSTRIAL NOISE & VIBRATION CONTROL	3-0-0	3	3			

PROGRAMME ELECTIVE 4

	PROGRAM ELECTIVE 4							
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT		
	1	222ECH202	NUCLEAR ENGINEERING & SAFETY	3-0-0	3	3		
	2	222ECH204	ISO 45001 & ISO 14000	3-0-0	3	3		
	3	222ECH206	DESIGN & ANALYSIS OF EXPERIMENTS	3-0-0	3	3		
D	4	222ECH208	DESIGN OF INDUSTRIAL VENTILATION SYSTEMS	3-0-0	3	3		
	5	222ECH210	SAFETY IN HIGH-PRESSURE SYSTEMS & VACUUM TECHNOLOGY	3-0-0	3	3		
	6	222ECH212	SAFETY IN MINES & POWER PLANTS	3-0-0	3	3		

INTERDISCIPLINARY ELECTIVE 3

	INTERDISCIPLINARY ELECTIVE								
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT			
E	1	222ECH214	PROCESS SAFETY ENGINEERING	3-0-0	3	3			
	2	222ECH216	WASTE TO ENERGY CONVERSION	3-0-0	3	3			
	3	222ECH218	HYDROGEN ENERGY: PRODUCTION, STORAGE, TRANSPORTATION & SAFETY	3-0-0	3	3			

SEMESTER III

SI OT	COURSE		MA	RKS	LTD	HOUDG	CDEDIT
SLOT	CODE	COURSE NAME	CIA	ESE	L-I-P	HOUKS	CREDIT
		TRACK 1					
A*	223MCHxxx	MOOC	T con succ	To be completed successfully			2
В	223AGExxx	AUDIT COURSE	40	60	3-0-0	3	
С	223ICH100	INTERNSHIP	50	50			3
D	223PCH100	DISSERTATION PHASE 1	100		0-0-17	17	11
		TRACK 2					
A*	223MCHxxx	MOOC	T con succ	o be ppleted essfully			2
В	223AGExxx	AUDIT COURSE	40	60	3-0-0	3	-
С	223ICH100	INTERNSHIP	50	50			3
D	223PCH101	RESEARCH PROJECT PHASE 1	100		0-0-17	17	11
Total			190	110		20	16

Teaching Assistance: 6 hours

*MOOC Course to be successfully completed before the commencement of the fourth semester (starting from semester 1).

AUDIT COURSE

			AUDIT COURSE			
SLOT	SL NO	COURSE CODE	COURSE NAME	L-T-P	HOURS	CREDIT
	1	223AGE100	ACADEMIC WRITING	3-0-0	3	-
	2	223AGE101	ADVANCED ENGINEERING MATERIALS	3-0-0	3	-
	3	223AGE102	FORENSIC ENGINEERING	3-0-0	3	-
	4	223AGE103	DATA SCIENCE FOR ENGINEERS	3-0-0	3	-
	5	223AGE104	DESIGN THINKING	3-0-0	3	-
	6	223AGE105	FUNCTIONAL PROGRAMMING IN HASKELL	3-0-0	3	-
В	7	223AGE106	FRENCH LANGUAGE (A1 LEVEL)	3-0-0	3	-
	8	223AGE107	GERMAN LANGUAGE (A1 LEVEL)	3-0-0	3	-
	9	223AGE108	JAPANESE LANGUAGE (N5 LEVEL)	3-0-0	3	-
	10	223AGE109	PRINCIPLES OF AUTOMATION	3-0-0	3	-
	11	223AGE110	REUSE AND RECYCLE TECHNOLOGY	3-0-0	3	-
	12	223AGE111	SYSTEM MODELING	3-0-0	3	-
	13	223AGE112	EXPERT SYSTEMS	3-0-0	3	-

SEMESTER IV

SLOT	COURSE	COURSE NAME	MARKS		L-T-P	HOURS	CREDIT
	CODE		CIA	ESE			
TRACK 1							
А	224PCH100	DISSERTATION PHASE II	100	100	0-0-24	24	16
TRACK 2							
А	224PCH001	RESEARCH PROJECT PHASE II	100	100	0-0-24	24	16
Total			100	100		24	16

Teaching Assistance: 5 hours

ASSESSMENT PATTERN

(i) CORE COURSES

The evaluation shall only be based on application, analysis or design-based questions (for both internal end-semester examinations).

Continuous Internal Evaluation: 40 marks

Micro project/Course based project: 20 marks

Course-based task/Seminar/Quiz: 10 marks

Test paper, 1 No: 10 marks

The project shall be done individually. Group projects not permitted. Test paper shall include a minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; Part A and Part B. Part A contain 5 numerical questions (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students), with 1 question from each module, having 5 marks for each question. Students shall answer all questions. Part B contains 7 questions (such questions shall be useful in the testing of overall achievement and maturity of thestudents in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student shall answer any five. Each question can carry 7 marks. Total duration of the examination will be 150 minutes.

(ii) ELECTIVE COURSES

The evaluation shall only be based on application, analysis or design-based questions (for both internal and end-semester examination.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer-reviewed

Original publications (minimum 10 publications shall be referred): 15 marks

Course-based task/Seminar/Data collection and interpretation: 15 marks

Test paper, 1 No.: 10 marks

Test paper shall include minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; PartA and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry 7 marks.

Note: The marks obtained for the ESE for an elective course shall not exceed 20% over the average ESE mark % for the core courses. ESE marks awarded to a student for each elective course shall be normalized accordingly. For example, if the average end semester mark % for a core course is 40, then the maximum eligible mark % for an elective course is 40+20 = 60 %.

(iii) RESEARCH METHODOLOGY & IPR/AUDIT COURSE

Continuous Internal Evaluation: 40 marks

Course-based task: 15 marks Seminar/Quiz: 15 marks Test paper, 1 No.: 10 marks Test paper shall include a minimum 80% of the syllabus.

End Semester Examination: 60 marks

The examination will be conducted for 150 minutes and will contain 7 questions, with minimum one question from each module of which students should answer any five. Each question can carry 12 marks.

(iv) LABORATORY COURSES

The laboratory courses will be having only Continuous Internal Evaluation and carries 100 marks. Final assessment shall be done by two examiners; one examiner will be a senior faculty from the same department.

(v) INTERDISCIPLINARY ELECTIVE

Engineering students frequently aspire to work in areas and domains that are key topics in the industry. There are concerns by recruiters that skill sets of engineering students did not match with the Industry requirements, especially in the field of latest topics. In response to their desires, the University has incorporated Industry/Interdisciplinary electives in the curriculum. Interdisciplinary knowledge is critical for connecting students with current industry trends, where multitasking is the norm. Interdisciplinary knowledge aids in the bridge- building process between academic institutions and industry. It aids pupils in expanding their knowledge and innovating by allowing them to create something new. While core engineering courses provide students with a strong foundation, evolving technology necessitates new methods and approaches to progress, prosperity, and the inculcation of problem-solving techniques. Other courses' knowledge, on the other hand, can assist them to deal with any scenario more effectively. Interdisciplinary courses may be one approach to address such needs, as they can aid in the enhancement of engineering education and the integration of desirable specialized subjects into the current engineering education system. This will enable students to fulfil the current industry demands. Students with multidisciplinary knowledge and projects are more likely to be placed in top industries, according to the placement trend. The future of developing engineers will be influenced by their understanding of emerging technology and interdisciplinary approaches such as big data, machine learning, and 3-D printing.

Continuous Internal Evaluation: 40 marks

Preparing a review article based on peer-reviewed Original publications (minimum 10 publications shall be referred): 15 marks Course-based task/Seminar/Data collection and interpretation: 15 marks Test paper, 1 No: 10 marks Test paper shall include a minimum 80% of the syllabus.

End Semester Examination: 60 marks

The end semester examination question paper will have two parts; PartA and Part B. Part A will contain 5 numerical/short answer questions with 1 question from each module, having 5 marks for each question (such questions shall be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students). Students should answer all questions. Part B will contain 7 questions (such questions shall be useful in the testing of overall achievement and maturity of the students in a course, through long answer questions relating to theoretical/practical knowledge, derivations, problem solving and quantitative evaluation), with minimum one question from each module of which student should answer any five. Each question can carry7 marks.

(vi) MOOC COURSES

The MOOC course shall be considered only if it is conducted by the agencies namely AICTE/NPTEL/SWAYAM or NITTTR. The MOOC course should have a minimum duration of 8 weeks and the content of the syllabus shall be enough for at least 40 hours of teaching. The course should have a proctored/offline end-semester examination. The students can do the MOOC according to their convenience but shall complete it by the third semester. The list of MOOC courses will be provided by the concerned BoS if at least 70% of the course content match with the area/stream of study. The course shall not be considered if its content has more than 50% of overlap with a core/elective course in the concerned discipline or with an open elective. MOOC Course to be successfully completed before the commencement of fourth semester (starting from semester 1). A credit of 2 will be awarded to all students who ever successfully complete the MOOC course as per the evaluation pattern of the respective agency conducting the MOOC.

(vii) MINIPROJECT

Total marks: 100, only CIA

Mini project can help to strengthen the understanding of student's fundamentals through application of theoretical concepts and to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problem-solving skills. The introduction of mini projects ensures the preparedness of students to undertake dissertation. Students should identify a topic of interest in consultation with PG Programme Coordinator that should lead to their dissertation/research project. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on three reviews, two interim reviews and a final review. A report is required at the end of the semester.

Interim evaluation: 40 (20 marks for each review), final evaluation by a Committee (will be evaluating the level of completion and demonstration of functionality/specifications, clarity of presentation, oral examination, work knowledge and involvement): 35, Report (the committee will be evaluating for the technical content, adequacy of references, templates followed and permitted plagiarism level is not more than 25%): 15, Supervisor/Guide: 10

TEACHING ASSISTANTSHIP (TA)

All M Tech students irrespective of their category of admission shall undertake TA duties for a minimum duration as per the curriculum. Being a TA, the student will get an excellent opportunity to improve their expertise in the technical content of the course, enhance communication skills, obtain a hands-on experience in handling the experiments in the laboratory and improve peer interactions.

The possible TA responsibilities include the following: facilitate a discussion section or tutorial for a theory/ course, facilitate to assist the students for a laboratory course, serve as a mentor for students, and act as the course web-master. TAs may be required to attend the instructor's lecture regularly. A TA shall not be employed as a substitute instructor, where the effect is to relieve the instructor of his or her teaching responsibilities.

For the tutorial session:

- (i) Meet the teacher and understand your responsibilities well in advance, attend the lectures of the course for which you are a tutor, work out the solutions for all the tutorial problems yourself, approach the teacher if you find any discrepancy or if you need help in solving the tutorial problems, use reference text books, be innovative and express everything in English only.
- (ii) Try to lead the students to the correct solutions by providing appropriate hints rather than solving the entire problem yourself, encourage questions from the students, lead the group to a discussion based on their questions, plan to ask them some questions be friendly and open with the students, simultaneously being firm with them.
- (iii) Keep track of the progress of each student in your group, give periodic feedback to the student about his/her progress, issue warnings if the student is consistently under-performing, report to the faculty if you find that a particular student is consistently underperforming, pay special attention to slow-learners and be open to the feedback and comments from the students and faculty.
- (iv) After the tutorial session you may be required to grade the tutorials/assignments/tests. Make sure that you work out the solutions to the questions yourself, and compare it with the answer key, think and work out possible alternate solutions to the same question, understand the marking scheme from the teacher. Consult the teacher if you are not partial to some student/students while grading. Follow basic ethics.

Handling a laboratory Session:

(i) Meet the faculty – in- charge a few days in advance of the actual lab class and get the details of the experiment, get clarifications from him/her regarding all aspects of the experiment and the expectations, prepare by reading about the theoretical background of the experiment, know the physical concepts involved

in the experiment, go to the laboratory and check out the condition of the equipment/instrumentation, perform the laboratory experiment at least once one or two days before the actual laboratory class, familiarize with safety/ security aspects of the experiment/equipment/laboratory, prepare an instruction sheet for the experiment in consultation with the faculty, and keep sufficient copies ready for distribution to students for their reference.

- (ii) Verify condition of the equipment/set up about 30 minutes before the students arrive in the class and be ready with the hand outs, make brief introductory remarks about the experiment, its importance, its relevance to the theory they have studied in the class, ask the students suitable questions to know their level of preparation for the experiment, discuss how to interpret results, ask them comment on the results.
- (iii) Correct/evaluate/grade the submitted reports after receiving suitable instructions from the faculty in charge, continue to interact with students if they have any clarifications regarding any aspect of the laboratory session, including of course grading, Carefully observe instrument and human safety in laboratory class, Preparing simple questions for short oral quizzing during explanation of experiments enables active participation of students, facilitate attention, provides feedback and formative assessment.